人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。系统进行视频车辆检测,需要具备很高的处理速度并采用优的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
在人脸识别设备未出现之前,人们采集信息的方法较为麻烦,而当时也没有一个简便的方法给到人们。当人脸识别技术出现后,人们采集信息的方法不仅简便很多,无人值守人脸识别还为人们的安全增添了很大的保障。智能人脸识别采用的是3D智能活体人脸识别,识别率不低于99%,可存储5000张人脸,人脸识别批发不论是在小区还是在工地,都可以运用。真地智能人脸识别无论在怎样的环境下都可以识别人脸信息。当户外环境的光线不太明朗时,或者是在夜晚时,真地智能人脸识别并不会受任何环境的影响而识别不出人脸信息。若小区安装了人脸识别,在有人尾随小区住户的情况下,人脸识别绝对会将尾随人员阻挡在门外。真地智能人脸识别只会识别出后台系统中录入的人脸信息,从而进行开闸。若你的人脸信息不在后台系统中,就算认证人脸识别,通道闸也不会开闸,反而人脸识别会语音播报,若有人强行闯入,则会想起警报,提示安保人员。在通行上,人脸识别极大地保障了人们的出行安全。
1、自主硬件研发:针对智能车牌识别系统研发出的硬件产品,智能车牌识别摄相机,其识别率、识别速度主要技术指标位列行业前茅,并推出满足不同环境,不同性价比的智能车牌识别摄像机系列。2、拥“私人订制”的车牌识别系统:智能车牌识别系统在识别环境、识别角度、灯光环境、车辆行驶速度、计费系统等方面都要有卓越发展,并且支持岗亭收费、中央收费、移动支付收费,停车云平台数据上传等,以广泛的通用性、卓越的系统稳定性和良好的用户体验受到业内好评。同时不同物业停车场管理者对应用的个性化需求越发凸显,具备有研发实力和软件对接服务能力,给客户提供个性化的服务更显其重要。3、拥有“傻瓜式”安装调试方法,节省时间和人力成本:智能车牌识别系统摄像机高度集成,支持地感线圈触发、视频流触发、地感+视频触发工作模式,安装施工简便,节省大量安装和维护成本。加之远程云系统应用平台,为设备的安装调试和服务提供了实时的远程技术支持,使得客户使用设备更得心应手,简洁方便。
1:1 意思为“这人是不是某人?”1:N 意思为“这人是谁?”人脸识别(Facial Recognition),就是通过视频采集设备获取用户的面部图像,再利用核心的算法对其脸部的五官位置、脸型和角度进行计算分析,进而和自身数据库里已有的范本进行比对,后判断出用户的真实身份。人脸识别技术基于局部特征区域的单训练样本人脸识别方法。人脸识别算法,在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。人脸识别算法的原理:系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
无牌车检测算法需要检测不同背景条件下,不同光照条件下的,不同姿态的各种车型的车辆。在停车场出入口,一辆车过来,只输出一次结果,这样要求将车与车分开,目前可以通过跟踪或者背景建模完成这一部分。算法要求的实时性高,主要用在出入口,在保证效果的基础上,时间的控制才能给用户好的体验。品壹车牌识别系统,运用车型识别和车辆检测算法,解决无牌车管理的情况。车牌识别相机抓拍一张图片,通过车型识别算法,当是真正的没有牌照的汽车时,相机会先将其划分为车的队列,进而区分是有牌汽车还是无牌汽车;当是一辆三轮车等真正的无牌车时,相机通过车型识别算法,直接将其划分为非车队列。通过无牌车检测中的车与非车的判断,做好更准确更精细化的停车管理。