应用场景:人脸与身份证匹配查验,确保人证合一除了采用真实身份证办理业务外,人工核对相片往往因为身份证相片相对早期、当事人带墨镜、化妆、发型等根本无法有效核实。如果查问过多会让持证人员感到厌烦,容易产生一些不必要的摩擦。故在查验身份证的基础上,通过摄像机无接触自动捕获人脸影像,并自动与身份证里存储的影像信息比对,或者与后台更多的真实身份人脸比对,并以多种方式提醒窗口业务人员比对结果,确保持证人是本人持真实身份证办理业务。应用场景:人脸证据保留,增强事后取证能力由于身份证信息中的照片相对陈旧,除了将摄像机捕获的当时人脸与身份证存储的相片比对外,系统不断积累办理业务时的人脸捕获数据,在人脸匹配查验过程中,不仅能跟身份证中存储的照片信息比对,还能对历史人脸信息比对,确保在身份证中的照片相对陈旧时,有更加接近当前时间的人脸数据,提高比对精确度。同时每次办理业务留下的人脸数据,可作为出现业务异常时追溯的重要证据。应用场景:支持未来刷脸办理业务随着人脸识别技术的不断成熟,对于公共服务部门来讲,对客户的贴身服务至关重要,系统要支持未来直接刷脸办理业务。即对于部分业务,要支持未来在 无需身份证信息的情况下,依然可以直接通过人脸识别身份信息,减少身份证 查验、复印存档等环节,提高客户办理业务的便捷性,提高窗口办理业务的效 率。
临桂区中庸镇三联村开展农村养老金待遇领取资格认证工作,参与认证人员只需要在村级协管员的协助下。在简单便携的资格认证识别仪器上先刷身份证再“刷脸”即可完成认证,每位老人的认证时间不超过两分钟。对于不方便使用机器的老人。则由协管员通过特殊处理人工照相的方式。完成自己的农村养老金待遇领取资格认证。两种方式结合,极大提高了农村养老金待遇领取资格认证的工作效率。深圳市品壹智能科技有限公司销售大量人脸识别设备,有兴趣的可咨询贵司
1) 牌照定位,定位图片中的牌照位置2) 牌照字符分割,把牌照中的字符分割出来;3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。1) 牌照定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个较好的区域作为牌照区域,并将其从图像中分离出来。2) 牌照字符分割:完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。3) 牌照字符:识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择好的匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
车辆检测可以采用埋地线圈检测、实名制系统红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。系统进行视频车辆检测,需要具备很高的处理速度并采用优的算法,在基本不丢帧的情况下实现图像采集、实名制系统厂家处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
人脸识别设备主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑人脸识别主要用于身份识别,人脸识别设备的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗