人脸识别设备是一项热门的计算机技术研究领域,它属于生物特征识别技术。是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等。相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别。只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。例如,在高速公路收费中车牌识别应用的作用之一是减少通行时间,速度是这一类应用里减少通行时间、避免车道堵车的有力保障。国际交通技术提出的识别速度是1秒以内,越快越好,以上就是小编关于车牌识别收费系统的识别速度了解。
(1)人脸检测:面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:①参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法:由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪:面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对:面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
该系统在我县城区的重点路口全面启用,利用视频感知技术和人脸识别功能,对行人闯红灯、过马路不走斑马线,非机动车骑乘不戴头盔、不走非机动车道、逆向行驶等交通违法行为进行自动抓拍。系统抓拍后,人脸图片会自动和公安部人口信息系统进行比对,经人工核实或智能判断无误后,人脸特写和相关信息会在路边大显示屏滚动播放。交警部门将依据抓拍系统,对闯红灯的行人和非机动车进行身份核实,并依法予以处罚,还将在广播、电视、报纸、网络以及微博、微信上集中曝光。
车辆身份特征分析系统是基于视频流、图片流的智能车辆识别系统,利用先进的机器学习与大数据技术,通过自动识别车牌与车型信息识别为公安交警部门打击嫌疑、假牌、套牌等违法行为提供有力保障。结合国际领先的机器学习与深度学习技术,可以对车辆的身份进行识别,包括车牌号码,车身颜色,车辆品牌,车辆子型号,具体年款等。本系统支持多种平台,包括windows 平台,linux 平台,arm 平台等,接口丰富灵活。可针对用户对现有卡口监控系统和高清监控系统的应用进行功能升级,用户需提供平台数据调取接口。通过数据调取接口可对接调取卡口实时抓拍图片及卡口视频等资源做后台实时做实时或者离线二次识别。一:机关事业单位车辆智能管理解决方案: 机关事业单位卡口、市政交管系统、平安城市管理系统开发运营类。二:智能停车场车辆管理解决方案:停车场 、商业楼宇、卡口管理系统开发运营类。三:智能称重管理解决方案:地磅称重、集 团物流排队、大宗物品一卡通管理系统开发运营类。四:汽车4S店应用管理方案:4S店车辆管理系统、自助洗车管理系统、加油站车辆管理系统开发运营类。