随着技术的发展,停车场系统不断地在升级,其功能也变得越来越多,目前,市面上的停车场系统主要有以下几种:IC、ID刷卡、蓝牙远距离读卡、车牌识别停车场系统等。近两年来,从人们的一个体验上来说,车牌识别停车场系统是车主最受欢迎的一套智能停车场管理系统之一。车牌识别停车场系统如此的受欢迎,原因之一就是加快了人们进出停车场的通行速度,由于它具有这一特殊功能,目前,在各大小停车场中都被人们所利用。那么在选购车牌识别停车场系统时,车牌识别停车场系统和普通的停车场系统在组成上大致相同,但是,车牌识别停车场系统对设备的要求会更高。首先,车牌识别停车场系统最重要的一个因素,就是识别率的问题,有的人从识别率的高低来判断设备的好与坏,其实这是一个很不科学的方法。识别率不仅和设备本身的问题有关,还和停车场的环境有关,环境对识别率影响有时可能会超过设备本身的因素,所以要想解决这个问题,车牌识别停车场不仅要配高清的车牌识别相机,还要根据现场状况安装一些补光设备来增加其识别效果。
应用场景:人脸与身份证匹配查验,确保人证合一除了采用真实身份证办理业务外,人工核对相片往往因为身份证相片相对早期、当事人带墨镜、化妆、发型等根本无法有效核实。如果查问过多会让持证人员感到厌烦,容易产生一些不必要的摩擦。故在查验身份证的基础上,通过摄像机无接触自动捕获人脸影像,并自动与身份证里存储的影像信息比对,或者与后台更多的真实身份人脸比对,并以多种方式提醒窗口业务人员比对结果,确保持证人是本人持真实身份证办理业务。应用场景:人脸证据保留,增强事后取证能力由于身份证信息中的照片相对陈旧,除了将摄像机捕获的当时人脸与身份证存储的相片比对外,系统不断积累办理业务时的人脸捕获数据,在人脸匹配查验过程中,不仅能跟身份证中存储的照片信息比对,还能对历史人脸信息比对,确保在身份证中的照片相对陈旧时,有更加接近当前时间的人脸数据,提高比对精确度。同时每次办理业务留下的人脸数据,可作为出现业务异常时追溯的重要证据。应用场景:支持未来刷脸办理业务随着人脸识别技术的不断成熟,对于公共服务部门来讲,对客户的贴身服务至关重要,系统要支持未来直接刷脸办理业务。即对于部分业务,要支持未来在 无需身份证信息的情况下,依然可以直接通过人脸识别身份信息,减少身份证 查验、复印存档等环节,提高客户办理业务的便捷性,提高窗口办理业务的效 率。
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
在众多车辆中,总不会缺少“黑名单”车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、闯祸逃逸及违章车辆等,一个一个去查太麻烦了,昆明广告门有什么设备可以自动监测呢?车牌识别系统便能如此。只要将违规车辆的号码牌输入到后台系统中,一旦这种非法车辆出来活动,在车牌识别系统监测的路口监测到之后,广告门价格后台系统便会发出警报,正确率高达99%。车牌识别系统的功能远远不止于此,真地智能车牌识别系统更是在无限的可能中继续探索,不断追求更大的发展。
该系统在我县城区的重点路口全面启用,利用视频感知技术和人脸识别功能,对行人闯红灯、过马路不走斑马线,非机动车骑乘不戴头盔、不走非机动车道、逆向行驶等交通违法行为进行自动抓拍。系统抓拍后,人脸图片会自动和公安部人口信息系统进行比对,经人工核实或智能判断无误后,人脸特写和相关信息会在路边大显示屏滚动播放。交警部门将依据抓拍系统,对闯红灯的行人和非机动车进行身份核实,并依法予以处罚,还将在广播、电视、报纸、网络以及微博、微信上集中曝光。
人脸识别设备是一项热门的计算机技术研究领域,它属于生物特征识别技术。是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等。相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别。只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。