(1)人脸检测:面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:①参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法:由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪:面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对:面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
根据设计方案、现场情况确定设备摆放位置;(1).确定道闸及读卡设备摆放位置,确定道闸及读卡设备摆放位置时首先要确保车道的宽度,以便车辆出入顺畅,车道宽度一般不小于3米,4.5米左右为最佳;读卡设备距道闸距离一般为2.5米,最近不小于2米,主要是防止读卡时车头可能触到栏杆;.对于地下停车场,读卡设备应尽量摆放在比较水平的地面,否则车辆在上下坡时停车读卡会比较麻烦;对于地下停车场,道闸上方若有阻挡物则需选用折杆式道闸,阻挡物高度-1.2米即为折杆点位置;道闸及读卡设备的摆放位置直接关系到用户使用是否方便的问题,一但位置确定管线到位后,再要更改位置则会给施工带来很大的麻烦,因此对于在这方面工程经验不是很多的工程人员来说,先将道闸及读卡设备安装到位,然后模拟使用者,会同甲方人员一起看定位是否合适,最后再敷设管线。(2).确定自动出卡机安装位置,在有临时车辆出入的停车场,若选择了远距离读卡设备,同时又选择了自动出卡机,则自动出卡设备为一独立体,安装在读卡设备正前方距读卡设备约0.3米;若选择了普通读卡设备,同时又选择了自动出卡机,则自动出卡机同读卡机安装在同一设备内,现场施工不必考虑这一步骤;确定摄像机安装位置(若没有选择图像对比功能,则不需考虑此项),进出口摄像机的视角范围主要针对出入车辆在读卡时的车牌位置,一般选择自动光圈镜头,安装高度一般为2-2.5米;(3).确定岗厅的位置,对于没有临时车辆的停车场岗厅的位置视场地而定,或者根本就不设岗厅;
通过郑州翼闸查询目标人像数据寻找数据库中是否存在重点人口基本信息。例如在机场或车站安装系统以抓捕在逃案犯。受安全保护的地区可以通过人脸识别辨识试图进入者的身份。人脸识别系统可用于企业、翼闸价格住宅安全和管门禁人脸识别理。如人脸识别门禁考勤系统,人脸识别防盗门等。可在机场、体育场、超级市场等公共场所对人群进行监视,例如在机场安装监视系统以防止恐怖分子登机。如银行的自动提款机,用户卡片和密码被盗,就会被他人冒取现金。同时应用人脸识别就会避免这种情况的发生。利用人脸识别辅助信用卡网络支付,以防止非信用卡的拥有者使用信用卡等。
车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。系统进行视频车辆检测,需要具备很高的处理速度并采用优的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。