人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
无牌车检测算法需要检测不同背景条件下,不同光照条件下的,不同姿态的各种车型的车辆。在停车场出入口,一辆车过来,只输出一次结果,这样要求将车与车分开,目前可以通过跟踪或者背景建模完成这一部分。算法要求的实时性高,主要用在出入口,在保证效果的基础上,时间的控制才能给用户好的体验。品壹车牌识别系统,运用车型识别和车辆检测算法,解决无牌车管理的情况。车牌识别相机抓拍一张图片,通过车型识别算法,当是真正的没有牌照的汽车时,相机会先将其划分为车的队列,进而区分是有牌汽车还是无牌汽车;当是一辆三轮车等真正的无牌车时,相机通过车型识别算法,直接将其划分为非车队列。通过无牌车检测中的车与非车的判断,做好更准确更精细化的停车管理。
北京市交通委24日发布系列措施,福州无人值守收费系统提高道路车牌识别收费系统识别准确率。对车牌识别,优化了车牌颜色识别算法,改进了夜间因反光造成的识别问题,对遮挡摄像头的树木进行了修剪。对计费误差,通过电子收费系统与前端设备数据交换校验,降低了错误订单量;同时规范人工服务流程,无人值守收费系统防止出现不完整订单。对“审核时间长”的问题,增加了本地车牌信息自动匹配校验功能,效率显著提升。目前,本地车牌审核只需几小时,一次性审核通过率达90%以上。对停车费“过高”的问题,明确停车费执行标准是2011年4月1日由北京市发展改革委制定的,没有调整
车牌自动识别系统 收费管理系统一进一出管理系统方案:一、车牌识别系统车牌识别模块属于纯软件识别方式,可根据客户需求抓拍车辆全景图片及特写图片,完成车辆特征的判断,结合触发机制,系统提供车辆行驶方向、经过时间、地点、车辆类型、车牌号码等基本信息。车牌识别模块技术参数:①、收费站车别识别系统可大大提高识别准确率:白天车辆号牌识别准确率大于97.7%;夜间车牌识别准确率92%以上。②、车辆捕获率采用地感触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达99.9%以上(建议采用这种触发方式)。采用视频触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达90%左右。