呼和浩特白塔国际机场日前对外消息称,中科院重庆绿色智能技术研究院为呼和浩特机场航空安保部提供的8套人脸识别设备已全部安装调试完成,至此该机场正式开启人脸识别安检新模式。记者了解到,该机场开启的人脸识别安检新模式,也成为中国国内第一批试用人脸识别系统的机场之一。目前该机场所有安检通道都已嵌入人脸识别系统。据悉,该系统的核心是进行身份证和人像的对比,系统可以提取身份证内的信息与现场拍摄到的身份证持有者图像进行对比,快速的识别出证件与证件使用人是否相一致。人脸识别系统人均检查时间约为2秒,较于人工验证的20秒,大大降低了核查时间,且识别率达到90%以上。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率。除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
应用场景:人脸与身份证匹配查验,确保人证合一除了采用真实身份证办理业务外,人工核对相片往往因为身份证相片相对早期、当事人带墨镜、化妆、发型等根本无法有效核实。如果查问过多会让持证人员感到厌烦,容易产生一些不必要的摩擦。故在查验身份证的基础上,通过摄像机无接触自动捕获人脸影像,并自动与身份证里存储的影像信息比对,或者与后台更多的真实身份人脸比对,并以多种方式提醒窗口业务人员比对结果,确保持证人是本人持真实身份证办理业务。应用场景:人脸证据保留,增强事后取证能力由于身份证信息中的照片相对陈旧,除了将摄像机捕获的当时人脸与身份证存储的相片比对外,系统不断积累办理业务时的人脸捕获数据,在人脸匹配查验过程中,不仅能跟身份证中存储的照片信息比对,还能对历史人脸信息比对,确保在身份证中的照片相对陈旧时,有更加接近当前时间的人脸数据,提高比对精确度。同时每次办理业务留下的人脸数据,可作为出现业务异常时追溯的重要证据。应用场景:支持未来刷脸办理业务随着人脸识别技术的不断成熟,对于公共服务部门来讲,对客户的贴身服务至关重要,系统要支持未来直接刷脸办理业务。即对于部分业务,要支持未来在 无需身份证信息的情况下,依然可以直接通过人脸识别身份信息,减少身份证 查验、复印存档等环节,提高客户办理业务的便捷性,提高窗口办理业务的效 率。
关闭人脸识别系统方法:1、找到“lenovo veriface”程序图标,右击选择“打开文件位置”项;2、在其安装目录中,找到“vfconfig.exe”程序,右击选择“以管理员身份运行”项;3、当然,也可以在任务栏右下角,右击“Veriface”程序图标,从弹出的右键菜单中选择“打开设置”项来运行配置界面;4、在打开的“veriface”程序界面中,将“启动Veriface”右侧的开关关闭掉;5、当然,如果不再需要该程序时,可以将其卸载掉,以上就是人脸识别设备的的关闭方法,更多详细可以询问深圳品壹智能科技有限公司。
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、武汉无人值守收费系统不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,无人值守收费系统厂家即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
在众多车辆中,总不会缺少“黑名单”车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、闯祸逃逸及违章车辆等,一个一个去查太麻烦了,有什么设备可以自动监测呢?车牌识别系统便能如此。只要将违规车辆的号码牌输入到后台系统中,一旦这种非法车辆出来活动,在车牌识别系统监测的路口监测到之后,后台系统便会发出警报,正确率高达99%。车牌识别系统的功能远远不止于此,真地智能车牌识别系统更是在无限的可能中继续探索,不断追求更大的发展。