http://www.pinyizn.com/data/images/slide/20190524101324_998.jpg

福州无人值守车牌识别收费系统价格

2021-01-02
福州无人值守车牌识别收费系统价格

车辆身份特征分析系统是基于视频流、图片流的智能车辆识别系统,利用先进的机器学习与大数据技术,通过自动识别车牌与车型信息识别为公安交警部门打击嫌疑、假牌、套牌等违法行为提供有力保障。结合国际领先的机器学习与深度学习技术,可以对车辆的身份进行识别,包括车牌号码,车身颜色,车辆品牌,车辆子型号,具体年款等。本系统支持多种平台,包括windows 平台,linux 平台,arm 平台等,接口丰富灵活。可针对用户对现有卡口监控系统和高清监控系统的应用进行功能升级,用户需提供平台数据调取接口。通过数据调取接口可对接调取卡口实时抓拍图片及卡口视频等资源做后台实时做实时或者离线二次识别。一:机关事业单位车辆智能管理解决方案: 机关事业单位卡口、市政交管系统、平安城市管理系统开发运营类。二:智能停车场车辆管理解决方案:停车场 、商业楼宇、卡口管理系统开发运营类。三:智能称重管理解决方案:地磅称重、集 团物流排队、大宗物品一卡通管理系统开发运营类。四:汽车4S店应用管理方案:4S店车辆管理系统、自助洗车管理系统、加油站车辆管理系统开发运营类。

福州无人值守车牌识别收费系统价格

在众多车辆中,总不会缺少“黑名单”车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、闯祸逃逸及违章车辆等,一个一个去查太麻烦了,福州车牌识别收费系统有什么设备可以自动监测呢?车牌识别系统便能如此。只要将违规车辆的号码牌输入到后台系统中,一旦这种非法车辆出来活动,在车牌识别系统监测的路口监测到之后,车牌识别收费系统价格后台系统便会发出警报,正确率高达99%。车牌识别系统的功能远远不止于此,真地智能车牌识别系统更是在无限的可能中继续探索,不断追求更大的发展。

福州无人值守车牌识别收费系统价格

人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。

福州无人值守车牌识别收费系统价格

一个车牌识别系统是否实用,最重要的指标是识别率。国际交通技术作过专门的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。之后便可以统计出以下识别率:1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数.2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。

福州无人值守车牌识别收费系统价格

可见光人脸识别设备:在可见光环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别,适合在光线好的条件下应用。主动近红外人脸识别:在主动红外光源环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别。采用主动红外光源是为减弱环境光对人脸成像造成不利的影响(逆光、侧光、强光、弱光),红外主动光源位于不可见波段,不会伤害人的眼睛,而中/远红外波段成像会损失物体表面大多数信息,所以近红外是好的选择。由于近红外无法在中、远距离采集人脸图像,并且要求底库的人脸图像也是近红外模式下采集的照片,因此其存在比较大的应用局限性,目前主要用于人脸考勤、门禁。在现阶段的实际应用中,可见光的人脸识别的应用更加广泛。

标签

在线留言
联系我们

电话:0755-21070079

邮箱:412555222@qq.com

地址:龙岗区龙岗街道南联社区 圳埔岭路2号A栋3楼

工地管理系统