该系统在我县城区的重点路口全面启用,利用视频感知技术和人脸识别功能,对行人闯红灯、过马路不走斑马线,非机动车骑乘不戴头盔、不走非机动车道、逆向行驶等交通违法行为进行自动抓拍。系统抓拍后,人脸图片会自动和公安部人口信息系统进行比对,经人工核实或智能判断无误后,人脸特写和相关信息会在路边大显示屏滚动播放。交警部门将依据抓拍系统,对闯红灯的行人和非机动车进行身份核实,并依法予以处罚,还将在广播、电视、报纸、网络以及微博、微信上集中曝光。
根据设计方案、现场情况确定设备摆放位置;(1).确定道闸及读卡设备摆放位置,确定道闸及读卡设备摆放位置时首先要确保车道的宽度,以便车辆出入顺畅,车道宽度一般不小于3米,4.5米左右为最佳;读卡设备距道闸距离一般为2.5米,最近不小于2米,主要是防止读卡时车头可能触到栏杆;.对于地下停车场,读卡设备应尽量摆放在比较水平的地面,否则车辆在上下坡时停车读卡会比较麻烦;对于地下停车场,道闸上方若有阻挡物则需选用折杆式道闸,阻挡物高度-1.2米即为折杆点位置;道闸及读卡设备的摆放位置直接关系到用户使用是否方便的问题,一但位置确定管线到位后,再要更改位置则会给施工带来很大的麻烦,因此对于在这方面工程经验不是很多的工程人员来说,先将道闸及读卡设备安装到位,然后模拟使用者,会同甲方人员一起看定位是否合适,最后再敷设管线。(2).确定自动出卡机安装位置,在有临时车辆出入的停车场,若选择了远距离读卡设备,同时又选择了自动出卡机,则自动出卡设备为一独立体,安装在读卡设备正前方距读卡设备约0.3米;若选择了普通读卡设备,同时又选择了自动出卡机,则自动出卡机同读卡机安装在同一设备内,现场施工不必考虑这一步骤;确定摄像机安装位置(若没有选择图像对比功能,则不需考虑此项),进出口摄像机的视角范围主要针对出入车辆在读卡时的车牌位置,一般选择自动光圈镜头,安装高度一般为2-2.5米;(3).确定岗厅的位置,对于没有临时车辆的停车场岗厅的位置视场地而定,或者根本就不设岗厅;
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率。除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。例如,在高速公路收费中车牌识别应用的作用之一是减少通行时间,速度是这一类应用里减少通行时间、避免车道堵车的有力保障。国际交通技术提出的识别速度是1秒以内,越快越好,以上就是小编关于车牌识别收费系统的识别速度了解。
人脸识别设备主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,优质平板人脸识别以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑人脸识别主要用于身份识别,人脸识别设备的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,平板人脸识别厂家从而实现快速身份识别。脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗