1.重视稳定度:随着产品算法与业者的技术提升,整合早就不是重要的话题,现阶段最需要注意的重点反而是"稳定度"。稳定度的定义是:在一个既定的车速范围内,不会让必须达到的准确度,因外在环境影响而产生过大的误差。例如一个车牌系统在白天有90%以上的准确度,到了傍晚就降到80%,夜间又降到70%,这种不稳定的系统,比起全天候平均拥有70%准确度的车牌辨识系统更难于整合。因为使用者会认为,既然白天的辨识率有90%,那全天候的准确率都要达到90%才合理,这样的规格还不包括奇怪的环境干扰(暴雨袭击、冰雹、浓雾区段等),与架设环境限制(高度限制、风大摇晃限制、不容易遭受人为破坏等)。2.确实实测:几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间好超过两个礼拜,比较能判断辨识结果是否"言过其实"。因为台湾是一个多变的环境,两个礼拜应该可以对于场域可能影响辨识率的情形,大约掌握了八成,如果只是测一天、甚至几个小时,是无法了解的。
北京市交通委24日发布系列措施,提高道路车牌识别收费系统识别准确率。对车牌识别,优化了车牌颜色识别算法,改进了夜间因反光造成的识别问题,对遮挡摄像头的树木进行了修剪。对计费误差,通过电子收费系统与前端设备数据交换校验,降低了错误订单量;同时规范人工服务流程,防止出现不完整订单。对“审核时间长”的问题,增加了本地车牌信息自动匹配校验功能,效率显著提升。目前,本地车牌审核只需几小时,一次性审核通过率达90%以上。对停车费“过高”的问题,明确停车费执行标准是2011年4月1日由北京市发展改革委制定的,没有调整
1、自主硬件研发:针对智能车牌识别系统研发出的硬件产品,智能车牌识别摄相机,其识别率、识别速度主要技术指标位列行业前茅,并推出满足不同环境,不同性价比的智能车牌识别摄像机系列。2、拥“私人订制”的车牌识别系统:智能车牌识别系统在识别环境、识别角度、灯光环境、车辆行驶速度、计费系统等方面都要有卓越发展,并且支持岗亭收费、中央收费、移动支付收费,停车云平台数据上传等,以广泛的通用性、卓越的系统稳定性和良好的用户体验受到业内好评。同时不同物业停车场管理者对应用的个性化需求越发凸显,具备有研发实力和软件对接服务能力小区车牌识别收费系统,给客户提供个性化的服务更显其重要。3、拥有“傻瓜式”安装调试方法,节省时间和人力成本:智能车牌识别系统摄像机高度济南厂家集成,支持地感线圈触发、视频流触发、地感+视频触发工作模式,安装施工简便,节省大量安装和维护成本。加之远程云系统应用平台,为设备的安装调试和服务提供了实时的远程技术支持,使得客户使用设备更得心应手,简洁方便。
静态人脸识别是指被识别的人,处于静止状态或配合状态下,采集其人脸图像,进行人脸识别。动态人脸识别是指被识别的人,处于移动状态或步行等非配合情况下,采集其人脸图像,进行人脸识别。静态人脸识别设备由于需要当事人配合、且采集人脸交互需要1-2秒时间,采集的人脸图像质量高,一般应用于当事人对时间不敏感或对采集人脸并不十分反感的场景。例如:金融开户、人脸门禁、身份识别、网吧身份证核查、访客登记、实名制验证等场合。动态人脸识别不需要当事人的配合,因此,一般应用于对当事人行为无干扰或当事人不感知的场景,例如:车站、机场、码头的案犯抓逃,VIP识别,重点人脸管控等。
车牌识别一体机 入驻川南奉公路819~835号了,感谢客户对君旭智能 无人值守车牌识别系统 的信任与支持,我们也非常高兴为川南奉公路提供 停车场车牌识别系统,解决停车场的车辆出入管理等问题。川南奉公路项目根据现场的实际情况,无人值守车牌识别一体机 选用的是进出一体化的道闸设备,双摄像头识别,安装简便。在安装 车牌识别一体机 之前,由于川南奉公路项目的人流车流量大,车辆进出混乱,管理效果不好;而安装 无人值守车牌识别一体机 之后,车牌识别系统 自动识别车辆的车牌号,通过对车辆进行 车牌识别 控制,实现车辆出入管理的自动化、智能化,人车分离,不仅使车辆的出入管理变得井然有序,且大大提升了进出效率。无人值守车牌识别一体机 具有高清识别、可脱机收费、左右向现场可调、进出一体化、防撞的特点。君旭智能 车牌识别一体机 支持微信、支付宝支付、手机移动端支付的方式;支持信息监管平台上传,使管理人员可以在智慧物业信息化监控中心更方便、及时、直观地看见设备监控情况、剩余车位、订单收费情况等的实时情况。
人脸识别设备是人脸识别产品利用AVS03A图像处理器;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等。而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。人脸识别设备是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。