人脸识别设备是一项热门的计算机技术研究领域,它属于生物特征识别技术。是对生物体西安人脸识别设备(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等。相应的识别技术就有人脸识别、指纹识别、小区人脸识别设备掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别。只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
在人脸识别设备未出现之前,人们采集信息的方法较为麻烦,而当时也没有一个简便的方法给到人们。当人脸识别技术出现后,人们采集信息的方法不仅简便很多,还为人们的安全增添了很大的保障。智能人脸识别采用的是3D智能活体人脸识别,识别率不低于99%,可存储5000张人脸,不论是在小区还是在工地,都可以运用。真地智能人脸识别无论在怎样的环境下都可以识别人脸信息。当户外环境的光线不太明朗时,或者是在夜晚时,真地智能人脸识别并不会受任何环境的影响而识别不出人脸信息。若小区安装了人脸识别,在有人尾随小区住户的情况下,人脸识别绝对会将尾随人员阻挡在门外。真地智能人脸识别只会识别出后台系统中录入的人脸信息,从而进行开闸。若你的人脸信息不在后台系统中,就算认证人脸识别,通道闸也不会开闸,反而人脸识别会语音播报,若有人强行闯入,则会想起警报,提示安保人员。在通行上,人脸识别极大地保障了人们的出行安全。
车牌自动识别系统 收费管理系统一进一出管理系统方案:一、车牌识别系统车牌识别模块属于纯软件识别方式,可根据客户需求抓拍车辆全景图片及特写图片,完成车辆特征的判断,结合触发机制,系统提供车辆行驶方向、经过时间、地点、车辆类型、车牌号码等基本信息。车牌识别模块技术参数:①、收费站车别识别系统可大大提高识别准确率:白天车辆号牌识别准确率大于97.7%;夜间车牌识别准确率92%以上。②、车辆捕获率采用地感触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达99.9%以上(建议采用这种触发方式)。采用视频触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达90%左右。
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。