一个车牌识别系统是否实用,最重要的指标是识别率。国际交通技术作过专门的识别率指标论述,人脸识别设备小区要求是24小时全天候全牌正确识别率85%~95%。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,人脸识别设备价格并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。之后便可以统计出以下识别率:1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数.2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。
(1)人脸检测:面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:①参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法:由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪:面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对:面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
应用场景:身份证查验,确保真实证件当前主要是通过扫描或者复印身份证信息,人工比对身份证照片。扫描或复印身份证只是作为备案,并不能有效核实身份证真伪。要确保是采用真实身份证办理业务,必须有某种技术手段对办事人提供的身份证进行查验。应用场景:人脸与身份证匹配查验,确保人证合一除了采用真实身份证办理业务外,人工核对相片往往因为身份证相片相对早期、当事人带墨镜、化妆、发型等根本无法有效核实。如果查问过多会让持证人员感到厌烦,容易产生一些不必要的摩擦。故在查验身份证的基础上,通过摄像机无接触自动捕获人脸影像,并自动与身份证里存储的影像信息比对,或者与后台更多的真实身份人脸比对,并以多种方式提醒窗口业务人员比对结果,确保持证人是本人持真实身份证办理业务。应用场景:人脸证据保留,增强事后取证能力由于身份证信息中的照片相对陈旧,除了将摄像机捕获的当时人脸与身份证存储的相片比对外,系统不断积累办理业务时的人脸捕获数据,在人脸匹配查验过程中,不仅能跟身份证中存储的照片信息比对,还能对历史人脸信息比对,确保在身份证中的照片相对陈旧时,有更加接近当前时间的人脸数据,提高比对准确度。同时每次办理业务留下的人脸数据,可作为出现业务异常时追溯的重要证据。应用场景:支持未来刷脸办理业务,随着人脸识别技术的不断成熟,对于公共服务部门来讲,对客户的贴身服务至关重要,系统要支持未来直接刷脸办理业务。即对于部分业务,要支持未来在无需身份证信息的情况下,依然可以直接通过人脸识别身份信息,减少身份证查验、复印存档等环节,提高客户办理业务的便捷性,提高窗口办理业务的效率
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率。除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
车牌识别收费系统是车牌识系统和称重两种系统相结合,实现工厂、矿业等运输辆进出称重的防作弊管理。在无人干预的情况下迅速、准确、安全、稳定、可靠地完成称重流称,实现计量过程中信息采集的全自动化管理。工厂内部车辆和外部车辆智能化管理,清析显示车辆称重情况,是进货还是出货,防止车辆出货时带走工厂货物或进厂时少货情况的产生,充分保障工厂的利益和国家的财产不会受到损失。车牌识别相机与称重计量软件结合,实现车辆的自动识别、避免出现物资种类的混装。通过开发相应软件模块将车牌识别相机接入称重系统,然后分别安装车辆在地磅、仓库等需要称重的位置,当车辆称重时车牌识别相机自动识别车牌号码,将对应的计量信息上传到称重计量软件中,从而有效掌控厂区内各车辆动态,并保证车辆在装卸物资时不会因进错仓库,造成混装情况。