人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
1.重视稳定度:随着产品算法与业者的技术提升,整合早就不是重要的话题,现阶段最需要注意的重点反而是"稳定度"。稳定度的定义是:在一个既定的车速范围内,不会让必须达到的准确度,因外在环境影响而产生过大的误差。例如一个车牌系统在白天有90%以上的准确度,到了傍晚就降到80%,夜间又降到70%,这种不稳定的系统,比起全天候平均拥有70%准确度的车牌辨识系统更难于整合。因为使用者会认为,既然白天的辨识率有90%,那全天候的准确率都要达到90%才合理,这样的规格还不包括奇怪的环境干扰(暴雨袭击、冰雹、浓雾区段等),与架设环境限制(高度限制、风大摇晃限制、不容易遭受人为破坏等)。2.确实实测:几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间好超过两个礼拜,比较能判断辨识结果是否"言过其实"。因为台湾是一个多变的环境,两个礼拜应该可以对于场域可能影响辨识率的情形,大约掌握了八成,如果只是测一天、甚至几个小时,是无法了解的。
人脸识别设备的优势在于其自然性和不被被测个体察觉的特点。所谓自然性,是指该识别方式同人类(甚至其他生物)进行个体识别时所利用的生物特征相同。例如人脸识别,人类也是通过观察比较人脸区分和确认身份的,另外具有自然性的识别还有虹膜识别语音识别、体形识别等,而指纹识别、虹膜识别等都不具有自然性,因为人类或者其他生物并不通过此类生物特征区别个体。不被察觉的特点对于一种识别方法也很重要,这会使该人脸设备设备识别方法不令人反感,并且因为不容易引起人的注意而不容易被欺骗。人脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗。
呼和浩特白塔国际机场日前对外消息称,中科院重庆绿色智能技术研究院为呼和浩特机场航空安保部提供的8套人脸识别设备已全部安装调试完成,至此该机场正式开启人脸识别安检新模式。记者了解到,该机场开启的人脸识别安检新模式,也成为中国国内第一批试用人脸识别系统的机场之一。目前该机场所有安检通道都已嵌入人脸识别系统。据悉,该系统的核心是进行身份证和人像的对比,系统可以提取身份证内的信息与现场拍摄到的身份证持有者图像进行对比,快速的识别出证件与证件使用人是否相一致。人脸识别系统人均检查时间约为2秒,较于人工验证的20秒,大大降低了核查时间,且识别率达到90%以上。
北京市交通委24日发布系列措施,哈尔滨车牌识别一体机车牌识别系统提高道路车牌识别收费系统识别准确率。对车牌识别,优化了车牌颜色识别算法,改进了夜间因反光造成的识别问题,对遮挡摄像头的树木进行了修剪。对计费误差,通过电子收费系统与前端设备数据交换校验,降低了错误订单量;同时规范人工服务流程,车牌识别一体机车牌识别系统防止出现不完整订单。对“审核时间长”的问题,增加了本地车牌信息自动匹配校验功能,效率显著提升。目前,本地车牌审核只需几小时,一次性审核通过率达90%以上。对停车费“过高”的问题,明确停车费执行标准是2011年4月1日由北京市发展改革委制定的,没有调整