根据设计方案、现场情况确定设备摆放位置;(1).确定道闸及读卡设备摆放位置,确定道闸及读卡设备摆放位置时首先要确保车道的宽度,以便车辆出入顺畅,车道宽度一般不小于3米,4.5米左右为最佳;读卡设备距道闸距离一般为2.5米,最近不小于2米,主要是防止读卡时车头可能触到栏杆;.对于地下停车场,读卡设备应尽量摆放在比较水平的地面,否则车辆在上下坡时停车读卡会比较麻烦;对于地下停车场,道闸上方若有阻挡物则需选用折杆式道闸,阻挡物高度-1.2米即为折杆点位置;道闸及读卡设备的摆放位置直接关系到用户使用是否方便的问题,一但位置确定管线到位后,再要更改位置则会给施工带来很大的麻烦,因此对于在这方面工程经验不是很多的工程人员来说,先将道闸及读卡设备安装到位,然后模拟使用者,会同甲方人员一起看定位是否合适,最后再敷设管线。(2).确定自动出卡机安装位置,在有临时车辆出入的停车场,若选择了远距离读卡设备,同时又选择了自动出卡机,则自动出卡设备为一独立体,安装在读卡设备正前方距读卡设备约0.3米;若选择了普通读卡设备,同时又选择了自动出卡机,则自动出卡机同读卡机安装在同一设备内,现场施工不必考虑这一步骤;确定摄像机安装位置(若没有选择图像对比功能,则不需考虑此项),进出口摄像机的视角范围主要针对出入车辆在读卡时的车牌位置,一般选择自动光圈镜头,安装高度一般为2-2.5米;(3).确定岗厅的位置,对于没有临时车辆的停车场岗厅的位置视场地而定,或者根本就不设岗厅;
无牌车检测算法需要检测不同背景条件下,不同光照条件下的,不同姿态的各种车型的车辆。在停车场出入口,一辆车过来,只输出一次结果,这样要求将车与车分开,目前可以通过跟踪或者背景建模完成这一部分。算法要求的实时性高,主要用在出入口,在保证效果的基础上,时间的控制才能给用户好的体验。品壹车牌识别系统,运用车型识别和车辆检测算法,解决无牌车管理的情况。车牌识别相机抓拍一张图片,通过车型识别算法,当是真正的没有牌照的汽车时,相机会先将其划分为车的队列,进而区分是有牌汽车还是无牌汽车;当是一辆三轮车等真正的无牌车时,相机通过车型识别算法,直接将其划分为非车队列。通过无牌车检测中的车与非车的判断,做好更准确更精细化的停车管理。
随着公司对幕墙项目装配式施工的大力推行,施工人员高空作业量及作业过程中的高坠风险大大减少。而诸如吊车、轨道吊、高空车之类的大型机械设备逐步成为施工主力,也成为幕墙项目安全管理的重中之重。轨道吊已成为超高层、大体量幕墙项目的首选,为有效控制吊装作业风险,广东分公司安监部针对其作业特点,严把方案、安装、验收、交底、旁站各各关口。然而对于轨道吊,不仅仅要控制好物的不安全状态,对于操作人员的管理也至关重要。如何确保吊装设备为专人操作,从而控制好人的不安全因素?分公司安全经理通过观察室外施工电梯指纹人脸识别控制系统,设想将其运用到吊装设备控制中,便立即联系设备控制箱生产厂家,将控制箱改装完成后,率先在前海嘉里T2幕墙项目进行试点。
静态人脸识别是指被识别的人,处于静止状态或配合状态下,采集其人脸图像,进行人脸识别。动态人脸识别是指被识别的人,处于移动状态或步行等非配合情况下,采集其人脸图像,无人值守收费系统价格进行人脸识别。静态无锡无人值守收费系统人脸识别设备由于需要当事人配合、且采集人脸交互需要1-2秒时间,采集的人脸图像质量高,一般应用于当事人对时间不敏感或对采集人脸并不十分反感的场景。例如:金融开户、人脸门禁、身份识别、网吧身份证核查、访客登记、实名制验证等场合。动态人脸识别不需要当事人的配合,因此,一般应用于对当事人行为无干扰或当事人不感知的场景,例如:车站、机场、码头的案犯抓逃,VIP识别,重点人脸管控等。
(1)人脸检测:面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:①参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法:由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪:面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对:面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法: