一个车牌识别系统是否实用,最重要的指标是识别率。国际交通技术作过专门的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。之后便可以统计出以下识别率:1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数.2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。
该系统在我县城区的重点路口全面启用,利用视频感知技术和人脸识别功能,对行人闯红灯、过马路不走斑马线,非机动车骑乘不戴头盔、不走非机动车道、逆向行驶等交通违法行为进行自动抓拍。系统抓拍后,人脸图片会自动和公安部人口信息系统进行比对,经人工核实或智能判断无误后,人脸特写和相关信息会在路边大显示屏滚动播放。交警部门将依据抓拍系统,对闯红灯的行人和非机动车进行身份核实,并依法予以处罚,还将在广播、电视、报纸、网络以及微博、微信上集中曝光。
1) 牌照定位,定位图片中的牌照位置2) 牌照字符分割,把牌照中的字符分割出来;3) 牌照字符识别,车牌识别摄像机厂家把分割好的字符进行识别,最终组成牌照号码。车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。1) 牌照定位:自然环境下,重庆车牌识别摄像机汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个较好的区域作为牌照区域,并将其从图像中分离出来。2) 牌照字符分割:完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。3) 牌照字符:识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择好的匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
根据设计方案、现场情况确定设备摆放位置;(1).确定道闸及读卡设备摆放位置,确定道闸及读卡设备摆放位置时首先要确保车道的宽度,以便车辆出入顺畅,车道宽度一般不小于3米,4.5米左右为最佳;读卡设备距道闸距离一般为2.5米,最近不小于2米,主要是防止读卡时车头可能触到栏杆;.对于地下停车场,读卡设备应尽量摆放在比较水平的地面,否则车辆在上下坡时停车读卡会比较麻烦;对于地下停车场,道闸上方若有阻挡物则需选用折杆式道闸,阻挡物高度-1.2米即为折杆点位置;道闸及读卡设备的摆放位置直接关系到用户使用是否方便的问题,一但位置确定管线到位后,再要更改位置则会给施工带来很大的麻烦,因此对于在这方面工程经验不是很多的工程人员来说,先将道闸及读卡设备安装到位,然后模拟使用者,会同甲方人员一起看定位是否合适,最后再敷设管线。(2).确定自动出卡机安装位置,在有临时车辆出入的停车场,若选择了远距离读卡设备,同时又选择了自动出卡机,则自动出卡设备为一独立体,安装在读卡设备正前方距读卡设备约0.3米;若选择了普通读卡设备,同时又选择了自动出卡机,则自动出卡机同读卡机安装在同一设备内,现场施工不必考虑这一步骤;确定摄像机安装位置(若没有选择图像对比功能,则不需考虑此项),进出口摄像机的视角范围主要针对出入车辆在读卡时的车牌位置,一般选择自动光圈镜头,安装高度一般为2-2.5米;(3).确定岗厅的位置,对于没有临时车辆的停车场岗厅的位置视场地而定,或者根本就不设岗厅;