管线敷设相对比较简单,在管线敷设之前,对照停车场系统原理图及管线图理清各信号属性、信号流程及各设备供电情况;信号线和电源要分别穿管,对电源线而言,不同电压等级、不同电流等级的线也不可穿同一条管。地感线圈的埋设:地感线圈的埋设一般跟管线敷设同时进行,具体方法参阅相关图纸。停车场系统所有线材型号:(1).通讯线(管理电脑至出入口机):RVVP4*0.5mm2,(2).控制线(出入口机至道闸):RVVP4*0.5mm2,(3).视频线(出入口摄橡机至管理电脑):CAT5网线,(4).地感线:耐高温抗腐蚀单股多芯1.5mm2导线绕制6圈,埋放深度3cm—5cm;(5).电源线:(供电至读卡机、道闸、摄像机)RVV3*1.5 mm2;7.3设备安装、接线。
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
交通建设是对国民经济发展具有全局性先导性影响的行业,同时交通建设行业也是一个安全事故多发的高危行业。如何提升行业的管理效率,加强施工现场的安全管理,杜绝各种违规操作和不文明施工是一项重要研究课题。智慧工地概念的提出,标志着建筑行业开始朝着智能化、信息化方向转变。智慧工地管理系统依托物联网、互联网建立,是一种全新的管理模式,能够实现劳务管理、安全施工的智能化和互联网化。陕西领航软件智慧工地管理系统与众多功能系统对接,包括劳务实名制管理系统、数据采集系统、大型机械监控系统以及视频监控系统等。实现工地全面管理、统一平台监测等功能。
可见光人脸识别设备:在可见光环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别,适合在光线好的条件下应用。主动近红外人脸识别:重庆车牌识别收费系统在主动红外光源环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别。采用主动红外光源是为减弱环境光对人脸成像造成不利的影响(逆光、侧光、强光、弱光),红外主动光源位于不可见波段,车牌识别收费系统批发不会伤害人的眼睛,而中/远红外波段成像会损失物体表面大多数信息,所以近红外是好的选择。由于近红外无法在中、远距离采集人脸图像,并且要求底库的人脸图像也是近红外模式下采集的照片,因此其存在比较大的应用局限性,目前主要用于人脸考勤、门禁。在现阶段的实际应用中,可见光的人脸识别的应用更加广泛。
无牌车检测算法需要检测不同背景条件下,不同光照条件下的,不同姿态的各种车型的车辆。在停车场出入口,一辆车过来,只输出一次结果,这样要求将车与车分开,目前可以通过跟踪或者背景建模完成这一部分。算法要求的实时性高,主要用在出入口,在保证效果的基础上,时间的控制才能给用户好的体验。品壹车牌识别系统,运用车型识别和车辆检测算法,解决无牌车管理的情况。车牌识别相机抓拍一张图片,通过车型识别算法,当是真正的没有牌照的汽车时,相机会先将其划分为车的队列,进而区分是有牌汽车还是无牌汽车;当是一辆三轮车等真正的无牌车时,相机通过车型识别算法,直接将其划分为非车队列。通过无牌车检测中的车与非车的判断,做好更准确更精细化的停车管理。
(1)人脸检测:面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:①参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法:由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪:面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对:面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法: