车牌自动识别系统 收费管理系统一进一出管理系统方案:一、车牌识别系统车牌识别模块属于纯软件识别方式,可根据客户需求抓拍车辆全景图片及特写图片,完成车辆特征的判断,结合触发机制,系统提供车辆行驶方向、经过时间、地点、车辆类型、车牌号码等基本信息。车牌识别模块技术参数:①、收费站车别识别系统可大大提高识别准确率:白天车辆号牌识别准确率大于97.7%;夜间车牌识别准确率92%以上。②、车辆捕获率采用地感触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达99.9%以上(建议采用这种触发方式)。采用视频触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达90%左右。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率。除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像最利于识别。
1) 牌照定位,定位图片中的牌照位置2) 牌照字符分割,把牌照中的字符分割出来;3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。1) 牌照定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个较好的区域作为牌照区域,并将其从图像中分离出来。2) 牌照字符分割:完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。3) 牌照字符:识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择好的匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
1.重视稳定度:随着产品算法与业者的技术提升,整合早就不是重要的话题,现阶段最需要注意的重点反而是"稳定度"。稳定度的定义是:在一个既定的车速范围内,不会让必须达到的准确度,因外在环境影响而产生过大的误差。例如一个车牌系统在白天有90%以上的准确度,到了傍晚就降到80%,夜间又降到70%,这种不稳定的系统,比起全天候平均拥有70%准确度的车牌辨识系统更难于整合。因为使用者会认为,既然白天的辨识率有90%,那全天候的准确率都要达到90%才合理,这样的规格还不包括奇怪的环境干扰(暴雨袭击、冰雹、浓雾区段等),与架设环境限制(高度限制、风大摇晃限制、不容易遭受人为破坏等)。2.确实实测:几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间好超过两个礼拜,比较能判断辨识结果是否"言过其实"。因为台湾是一个多变的环境,两个礼拜应该可以对于场域可能影响辨识率的情形,大约掌握了八成,如果只是测一天、甚至几个小时,是无法了解的。