人脸识别设备是一项热门的计算机技术研究领域,它属于生物特征识别技术。是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等。相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别。只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
一个车牌识别系统是否实用,最重要的指标是识别率。国际交通技术作过专门的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。之后便可以统计出以下识别率:1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数.2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。
以智慧工地云平台为基础,利用物联网技术综合采集工地现场各类数据,通过建立各类监管业务子系统,并综合运用模糊评价、神经网络等多种数据分析模型,长沙人脸识别实现对施工现场的日常行为监管,达到规范施工现场作业行为、监测工程质量及施工安全状况等效果智慧工地管理系统是比较先进的系统,对建筑工人而言,被这种“时髦”的方式管理着,可以有效的解决许多问题,人脸识别价格方式也比较新颖,执行效率比较高。而对于建筑管理方来说,用来提升工程项目的进度,既方便了管理,也提高了效率,总之,智慧工地为工程项目管理方面提供了便利,节约了成本及时间,可以高效的完成工程建设。“互联网+工地”还是对工程建设上有很大的帮助。
车牌识别云台摄像机通过光抑制屏蔽,电子快门调节,宽动态功能等来实现抓拍车牌:强光屏蔽:在低照度彩色摄像机的基础上,通过软件的功能,把图像中最亮的部分遮挡。在交通监控中,一般可将大灯的强光遮挡,从而将车牌较清晰的抓拍下来。但是这款摄像机最大的缺点就是软件分辨不清,对于图像最亮部分界定不清,有可能将车牌号码也遮挡。同时无法处理高速运动物体的抓拍。目前国产摄像机在强光屏蔽方面做的比较多,效果各方反映不一。
(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的"面纹编码"方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中准确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。