1、自主硬件研发:针对智能车牌识别系统研发出的硬件产品,智能车牌识别摄相机,其识别率、识别速度主要技术指标位列行业前茅,并推出满足不同环境,不同性价比的智能车牌识别摄像机系列。2、拥“私人订制”的车牌识别系统:智能车牌识别系统在识别环境、识别角度、灯光环境、车辆行驶速度、计费系统等方面都要有卓越发展,并且支持岗亭收费、中央收费、移动支付收费,停车云平台数据上传等,以广泛的通用性、卓越的系统稳定性和良好的用户体验受到业内好评。同时不同物业停车场管理者对应用的个性化需求越发凸显,具备有研发实力和软件对接服务能力小区实名制系统,给客户提供个性化的服务更显其重要。3、拥有“傻瓜式”安装调试方法,节省时间和人力成本:智能车牌识别系统摄像机高度成都厂家集成,支持地感线圈触发、视频流触发、地感+视频触发工作模式,安装施工简便,节省大量安装和维护成本。加之远程云系统应用平台,为设备的安装调试和服务提供了实时的远程技术支持,使得客户使用设备更得心应手,简洁方便。
人脸识别设备是人脸识别产品利用AVS03A图像处理器;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
1.重视稳定度:随着产品算法与业者的技术提升,整合早就不是重要的话题,现阶段最需要注意的重点反而是"稳定度"。稳定度的定义是:在一个既定的车速范围内,不会让必须达到的准确度,因外在环境影响而产生过大的误差。例如一个车牌系统在白天有90%以上的准确度,到了傍晚就降到80%,夜间又降到70%,这种不稳定的系统,比起全天候平均拥有70%准确度的车牌辨识系统更难于整合。因为使用者会认为,既然白天的辨识率有90%,那全天候的准确率都要达到90%才合理,这样的规格还不包括奇怪的环境干扰(暴雨袭击、冰雹、浓雾区段等),与架设环境限制(高度限制、风大摇晃限制、不容易遭受人为破坏等)。2.确实实测:几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间好超过两个礼拜,比较能判断辨识结果是否"言过其实"。因为台湾是一个多变的环境,两个礼拜应该可以对于场域可能影响辨识率的情形,大约掌握了八成,如果只是测一天、甚至几个小时,是无法了解的。
智能车牌识别系统是一种以高效,公正准确,科学经济的停车场管理工具,实现停车场对于车辆静态与动态的综合管理。如今,智能车牌识别系统为了提高了人们对停车场系统的掌控要求,使人们停车简单而变得更加多样化。智能车牌识别系统可以有效地解决人工收费中容易发生的争执、费用流失、车辆被盗、服务效率低、管理形象差等问题,也能让车友更快停车、取车,去一个地方还能通过一些平台预先定停车位,缴费也安全、便捷。系统通过感应卡为载体,通过感应卡记录车辆的进出信息,利用计算机的管理手段,由此来确定停车场的计费金额,结合工业自动化控制的技术控制机电一体化外围设备,由此来管理进出停车场的各种车辆,随着科技的不断更新,受到广大车友们的喜爱。
呼和浩特白塔国际机场日前对外消息称,中科院重庆绿色智能技术研究院为呼和浩特机场航空安保部提供的8套人脸识别设备已全部安装调试完成,至此该机场正式开启人脸识别安检新模式。记者了解到,该机场开启的人脸识别安检新模式,也成为中国国内第一批试用人脸识别系统的机场之一。目前该机场所有安检通道都已嵌入人脸识别系统。据悉,该系统的核心是进行身份证和人像的对比,系统可以提取身份证内的信息与现场拍摄到的身份证持有者图像进行对比,快速的识别出证件与证件使用人是否相一致。人脸识别系统人均检查时间约为2秒,较于人工验证的20秒,大大降低了核查时间,且识别率达到90%以上。
1) 牌照定位,定位图片中的牌照位置2) 牌照字符分割,把牌照中的字符分割出来;3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。1) 牌照定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个较好的区域作为牌照区域,并将其从图像中分离出来。2) 牌照字符分割:完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。3) 牌照字符:识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择好的匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。