应用场景:身份证查验,确保真实证件当前主要是通过扫描或者复印身份证信息,人工比对身份证照片。扫描或复印身份证只是作为备案,并不能有效核实身份证真伪。要确保是采用真实身份证办理业务,必须有某种技术手段对办事人提供的身份证进行查验。应用场景:人脸与身份证匹配查验,确保人证合一除了采用真实身份证办理业务外,人工核对相片往往因为身份证相片相对早期、当事人带墨镜、化妆、发型等根本无法有效核实。如果查问过多会让持证人员感到厌烦,容易产生一些不必要的摩擦。故在查验身份证的基础上,通过摄像机无接触自动捕获人脸影像,并自动与身份证里存储的影像信息比对,或者与后台更多的真实身份人脸比对,并以多种方式提醒窗口业务人员比对结果,确保持证人是本人持真实身份证办理业务。应用场景:人脸证据保留,增强事后取证能力由于身份证信息中的照片相对陈旧,除了将摄像机捕获的当时人脸与身份证存储的相片比对外,系统不断积累办理业务时的人脸捕获数据,在人脸匹配查验过程中,不仅能跟身份证中存储的照片信息比对,还能对历史人脸信息比对,确保在身份证中的照片相对陈旧时,有更加接近当前时间的人脸数据,提高比对准确度。同时每次办理业务留下的人脸数据,可作为出现业务异常时追溯的重要证据。应用场景:支持未来刷脸办理业务,随着人脸识别技术的不断成熟,对于公共服务部门来讲,对客户的贴身服务至关重要,系统要支持未来直接刷脸办理业务。即对于部分业务,要支持未来在无需身份证信息的情况下,依然可以直接通过人脸识别身份信息,减少身份证查验、复印存档等环节,提高客户办理业务的便捷性,提高窗口办理业务的效率
技术集成化:本系统是汇合网络数字视频技术,报警技术、计算机网络软件技术,及无障碍通道技术等精心设计成的工地平安管理系统。2、 人员信息管理系统化:传统管理没有对劳务施工人员的信息材料停止有效整合,在管理上存在破绽,而采用施工劳务实名制管理系统,将每个劳务人员的根本信息录入到管理系统中,同时对每个劳务人员编辑输出劳动合同、进退场承诺书、平安教育书。另对每位劳务人员发放代表本人身份的IC卡,该卡将用于考勤、会议签到、宿舍就寝签到、开闸入场作业等。3、 考勤管理信息化:经过考勤闸机搜集劳务人员的考勤信息,由管理软件对考勤信息停止剖析统计,管理人员可直观、快速的理解每个劳务人员或整个班组的缺勤状况,据此剖析劳务用工效率工种组合的合理性,进度能否满足工期节点等信息。考勤记载还能够作为处置劳务工资纠葛的根据。4、 操作便当、维护便利:操作界面为中文版,设备的衔接只需求简单的步骤,系统设备主要经过网线衔接,维护、排查便当。5、 扩容性强、平安性高:工地如增加新通道,只需装置新的控制器设备,并经过网线连入网络皆可完成与软件的互交。软件登陆可设置密码登陆,另可设置不同的登陆客户,每个客户可赋予不同的操作权限。
自动放行:将指定的牌照信息输入系统,圆柱人脸识别宁波系统自动地识读经过车辆的牌照并查询内部数据库。对于需要自动放行的车辆系统驱动电子门或栏杆机让其通过,对于其它车辆系统会给出警示,由值勤人员处理。可用于特殊单位(如军事管理区、保密单位、重点保护单位等)、路桥收费卡口、圆柱人脸识别批发高级住宅区等。高速公路收费管理:在高速路的各个出入口安装车牌识别设备,车辆驶入时识别车辆牌照将入口资料存入收费系统,车辆到达出口时再次识别其牌照并根据牌照信息调用入口资料,结合出入口资料实现收费管理。这种应用可以实现自动计费并可防止作弊,避免了应收款的流失。高速公路已开始实施联网收费,随着联网范围的扩大,不同车型的收费差额也越来越高,司机利用现有收费系统的漏洞通过中途换卡进行逃费的问题将越来越突出,利用车牌识别技术是解决此类问题的根本方法。
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息。深度剖析移动端车牌识别与PC端车牌识别有何不同,车牌识别又分为PC端车牌识别与移动端车牌识别及服务器端车牌识别,移动端车牌识别扫描识别OCR技术是易泊开发的基于移动平台的车牌识别软件开发包,支持android、ios等多种主流移动操作系统。该产品采用手机、平板电脑摄像头拍摄汽车牌照图像,然后通过OCR软件对车牌颜色、车牌号进行识别。移动端车牌识别扫描录入技术:支持平台:Android、iOS系统支持二次开发:提供Android开发JAR包,iOS平台.a静态库应用车牌识别识别模式:首创视频预览模式
呼和浩特白塔国际机场日前对外消息称,中科院重庆绿色智能技术研究院为呼和浩特机场航空安保部提供的8套人脸识别设备已全部安装调试完成,至此该机场正式开启人脸识别安检新模式。记者了解到,该机场开启的人脸识别安检新模式,也成为中国国内第一批试用人脸识别系统的机场之一。目前该机场所有安检通道都已嵌入人脸识别系统。据悉,该系统的核心是进行身份证和人像的对比,系统可以提取身份证内的信息与现场拍摄到的身份证持有者图像进行对比,快速的识别出证件与证件使用人是否相一致。人脸识别系统人均检查时间约为2秒,较于人工验证的20秒,大大降低了核查时间,且识别率达到90%以上。
一个车牌识别系统是否实用,最重要的指标是识别率。国际交通技术作过专门的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。之后便可以统计出以下识别率:1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数.2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。