车辆身份特征分析系统是基于视频流、图片流的智能车辆识别系统,利用先进的机器学习与大数据技术,通过自动识别车牌与车型信息识别为公安交警部门打击嫌疑、假牌、套牌等违法行为提供有力保障。结合国际领先的机器学习与深度学习技术,可以对车辆的身份进行识别,包括车牌号码,车身颜色,车辆品牌,车辆子型号,具体年款等。本系统支持多种平台,包括windows 平台,linux 平台,arm 平台等,接口丰富灵活。可针对用户对现有卡口监控系统和高清监控系统的应用进行功能升级,用户需提供平台数据调取接口。通过数据调取接口可对接调取卡口实时抓拍图片及卡口视频等资源做后台实时做实时或者离线二次识别。一:机关事业单位车辆智能管理解决方案: 机关事业单位卡口、市政交管系统、平安城市管理系统开发运营类。二:智能停车场车辆管理解决方案:停车场 、商业楼宇、卡口管理系统开发运营类。三:智能称重管理解决方案:地磅称重、集 团物流排队、大宗物品一卡通管理系统开发运营类。四:汽车4S店应用管理方案:4S店车辆管理系统、自助洗车管理系统、加油站车辆管理系统开发运营类。
临桂区中庸镇三联村开展农村养老金待遇领取资格认证工作,参与认证人员只需要在村级协管员的协助下。在简单便携的资格认证识别仪器上先刷身份证再“刷脸”即可完成认证,每位老人的认证时间不超过两分钟。对于不方便使用机器的老人。则由协管员通过特殊处理人工照相的方式。完成自己的农村养老金待遇领取资格认证。两种方式结合,极大提高了农村养老金待遇领取资格认证的工作效率。深圳市品壹智能科技有限公司销售大量人脸识别设备,有兴趣的可咨询贵司
静态人脸识别是指被识别的人,处于静止状态或配合状态下,采集其人脸图像,进行人脸识别。动态人脸识别是指被识别的人,处于移动状态或步行等非配合情况下,采集其人脸图像,进行人脸识别。静态人脸识别设备由于需要当事人配合、且采集人脸交互需要1-2秒时间,采集的人脸图像质量高,一般应用于当事人对时间不敏感或对采集人脸并不十分反感的场景。例如:金融开户、人脸门禁、身份识别、网吧身份证核查、访客登记、实名制验证等场合。动态人脸识别不需要当事人的配合,因此,一般应用于对当事人行为无干扰或当事人不感知的场景,例如:车站、机场、码头的案犯抓逃,VIP识别,重点人脸管控等。
车牌识别一体机 入驻川南奉公路819~835号了,感谢客户对君旭智能 无人值守车牌识别系统 的信任与支持,我们也非常高兴为川南奉公路提供 停车场车牌识别系统,解决停车场的车辆出入管理等问题。川南奉公路项目根据现场的实际情况,无人值守车牌识别一体机 选用的是进出一体化的道闸设备,双摄像头识别,安装简便。在安装 车牌识别一体机 之前,由于川南奉公路项目的人流车流量大,车辆进出混乱,管理效果不好;而安装 无人值守车牌识别一体机 之后,车牌识别系统 自动识别车辆的车牌号,通过对车辆进行 车牌识别 控制,实现车辆出入管理的自动化、智能化,人车分离,不仅使车辆的出入管理变得井然有序,且大大提升了进出效率。无人值守车牌识别一体机 具有高清识别、可脱机收费、左右向现场可调、进出一体化、防撞的特点。君旭智能 车牌识别一体机 支持微信、支付宝支付、手机移动端支付的方式;支持信息监管平台上传,使管理人员可以在智慧物业信息化监控中心更方便、及时、直观地看见设备监控情况、剩余车位、订单收费情况等的实时情况。
可见光人脸识别设备:在可见光环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别,适合在光线好的条件下应用。主动近红外人脸识别:西安三辊闸在主动红外光源环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别。采用主动红外光源是为减弱环境光对人脸成像造成不利的影响(逆光、侧光、强光、弱光),红外主动光源位于不可见波段,三辊闸批发不会伤害人的眼睛,而中/远红外波段成像会损失物体表面大多数信息,所以近红外是好的选择。由于近红外无法在中、远距离采集人脸图像,并且要求底库的人脸图像也是近红外模式下采集的照片,因此其存在比较大的应用局限性,目前主要用于人脸考勤、门禁。在现阶段的实际应用中,可见光的人脸识别的应用更加广泛。
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。