(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的"面纹编码"方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中准确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
1) 牌照定位,定位图片中的牌照位置2) 牌照字符分割,把牌照中的字符分割出来;3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。1) 牌照定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个较好的区域作为牌照区域,并将其从图像中分离出来。2) 牌照字符分割:完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。3) 牌照字符:识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择好的匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
以智慧工地云平台为基础,利用物联网技术综合采集工地现场各类数据,通过建立各类监管业务子系统,并综合运用模糊评价、神经网络等多种数据分析模型,宁波平板人脸识别实现对施工现场的日常行为监管,达到规范施工现场作业行为、监测工程质量及施工安全状况等效果智慧工地管理系统是比较先进的系统,对建筑工人而言,被这种“时髦”的方式管理着,可以有效的解决许多问题,平板人脸识别批发方式也比较新颖,执行效率比较高。而对于建筑管理方来说,用来提升工程项目的进度,既方便了管理,也提高了效率,总之,智慧工地为工程项目管理方面提供了便利,节约了成本及时间,可以高效的完成工程建设。“互联网+工地”还是对工程建设上有很大的帮助。
交通建设是对国民经济发展具有全局性先导性影响的行业,同时交通建设行业也是一个安全事故多发的高危行业。如何提升行业的管理效率,加强施工现场的安全管理,杜绝各种违规操作和不文明施工是一项重要研究课题。智慧工地概念的提出,标志着建筑行业开始朝着智能化、信息化方向转变。智慧工地管理系统依托物联网、互联网建立,是一种全新的管理模式,能够实现劳务管理、安全施工的智能化和互联网化。陕西领航软件智慧工地管理系统与众多功能系统对接,包括劳务实名制管理系统、数据采集系统、大型机械监控系统以及视频监控系统等。实现工地全面管理、统一平台监测等功能。