车牌识别云台摄像机通过光抑制屏蔽,电子快门调节,宽动态功能等来实现抓拍车牌:强光屏蔽:在低照度彩色摄像机的基础上,通过软件的功能,把图像中最亮的部分遮挡。在交通监控中,一般可将大灯的强光遮挡,从而将车牌较清晰的抓拍下来。但是这款摄像机最大的缺点就是软件分辨不清,对于图像最亮部分界定不清,有可能将车牌号码也遮挡。同时无法处理高速运动物体的抓拍。目前国产摄像机在强光屏蔽方面做的比较多,效果各方反映不一。
固定车、月租车实现脱机进出:固定车、月租车不受脱机的影响,正常进出,语音显示屏人性化友好提示,进出记录保存至摄像机。计算机恢复工作后,自动上传,彻底颠覆目前市场上月租车只能开闸,没有进出记录和友好提示的囧境,同时改变了软识别在脱机状态下,系统瘫痪的局面。无牌车可自动进出:无牌车采用车主微信扫码或远程值守人员协助系统控制道闸开闸放行。缴费方式灵活多样:支持临时车自助缴费,月租车自助延期等,微信、支付宝多种电子支付、现金缴费以及现金找零并存、自助提供定额发票等功能,避免了无现金运营风险。不用担心找零,提高车辆通行速度,同时降低停车场人工管理成本,从而提高车场车位运转能力和收入。
一个车牌识别系统是否实用,最重要的指标是识别率。国际交通技术作过专门的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。之后便可以统计出以下识别率:1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数.2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。
1:1 意思为“这人是不是某人?”1:N 意思为“这人是谁?”人脸识别(Facial Recognition),就是通过视频采集设备获取用户的面部图像,再利用核心的算法对其脸部的五官位置、脸型和角度进行计算分析,进而和自身数据库里已有的范本进行比对,后判断出用户的真实身份。人脸识别技术基于局部特征区域的单训练样本人脸识别方法。人脸识别算法,在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。人脸识别算法的原理:系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
技术集成化:本系统是汇合网络数字视频技术,报警技术、计算机网络软件技术,及无障碍通道技术等精心设计成的工地平安管理系统。2、 人员信息管理系统化:传统管理没有对劳务施工人员的信息材料停止有效整合,在管理上存在破绽,而采用施工劳务实名制管理系统,将每个劳务人员的哈尔滨圆柱人脸识别根本信息录入到管理系统中,同时对每个劳务人员编辑输出劳动合同、进退场承诺书、平安教育书。另对每位劳务人员发放代表本人身份的IC卡,该卡将用于考勤圆柱人脸识别价格、会议签到、宿舍就寝签到、开闸入场作业等。3、 考勤管理信息化:经过考勤闸机搜集劳务人员的考勤信息,由管理软件对考勤信息停止剖析统计,管理人员可直观、快速的理解每个劳务人员或整个班组的缺勤状况,据此剖析劳务用工效率工种组合的合理性,进度能否满足工期节点等信息。考勤记载还能够作为处置劳务工资纠葛的根据。4、 操作便当、维护便利:操作界面为中文版,设备的衔接只需求简单的步骤,系统设备主要经过网线衔接,维护、排查便当。5、 扩容性强、平安性高:工地如增加新通道,只需装置新的控制器设备,并经过网线连入网络皆可完成与软件的互交。软件登陆可设置密码登陆,另可设置不同的登陆客户,每个客户可赋予不同的操作权限。