车牌识别系统的工作原理,一个车位对应为一辆车,如果您有多辆车,一个车位可以录入多个车牌(一个车位登记不超过三辆车)当A车先进入园区停放,B、C车再进入园区则记为临停,当A车驶出园区,那么B或C车进入园区则正常停放,不计入临停。龙城国际物业服务中心需要业主提供身份证(核实业主身份)、行驶证、驾照是为确保业主信息和车辆信息的准确性,新系统投入使用后避免因登记车牌和实际使用车牌不匹配给您造成不便。如您的车牌信息未发生改变,我们将按照原始登记信息进行录入,在使用过程中因车牌信息有误导致车辆不能正常通行,请前往物业服务中心改车牌信息。
在众多车辆中,总不会缺少“黑名单”车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、闯祸逃逸及违章车辆等,一个一个去查太麻烦了,有什么设备可以自动监测呢?车牌识别系统便能如此。只要将违规车辆的号码牌输入到后台系统中,一旦这种非法车辆出来活动,在车牌识别系统监测的路口监测到之后,后台系统便会发出警报,正确率高达99%。车牌识别系统的功能远远不止于此,真地智能车牌识别系统更是在无限的可能中继续探索,不断追求更大的发展。
车牌自动识别系统 收费管理系统一进一出管理系统方案:一、车牌识别系统车牌识别模块属于纯软件识别方式,可根据客户需求抓拍车辆全景图片及特写图片,完成车辆特征的判断,结合触发机制,系统提供车辆行驶方向、经过时间、地点、车辆类型、车牌号码等基本信息。车牌识别模块技术参数:①、收费站车别识别系统可大大提高识别准确率:白天车辆号牌识别准确率大于97.7%;夜间车牌识别准确率92%以上。②、车辆捕获率采用地感触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达99.9%以上(建议采用这种触发方式)。采用视频触发方式,监控区域内对5km/h~160km/h行驶的车辆图像捕获率达90%左右。
人脸识别设备是人脸识别产品利用AVS03A图像处理器;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等。而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。人脸识别设备是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
应用场景:工地管理系统批发人脸与身份证匹配查验,确保人证合一除了采用真实身份证办理业务外,人工核对相片往往因为身份证相片相对早期、当事人带墨镜、化妆、发型等根本无法有效核实。如果查问过多会让持证人员感到厌烦,容易产生一些不必要的摩擦。故在查验身份证的基础上,成都工地管理系统通过摄像机无接触自动捕获人脸影像,并自动与身份证里存储的影像信息比对,或者与后台更多的真实身份人脸比对,并以多种方式提醒窗口业务人员比对结果,确保持证人是本人持真实身份证办理业务。应用场景:人脸证据保留,增强事后取证能力由于身份证信息中的照片相对陈旧,除了将摄像机捕获的当时人脸与身份证存储的相片比对外,系统不断积累办理业务时的人脸捕获数据,在人脸匹配查验过程中,不仅能跟身份证中存储的照片信息比对,还能对历史人脸信息比对,确保在身份证中的照片相对陈旧时,有更加接近当前时间的人脸数据,提高比对精确度。同时每次办理业务留下的人脸数据,可作为出现业务异常时追溯的重要证据。应用场景:支持未来刷脸办理业务随着人脸识别技术的不断成熟,对于公共服务部门来讲,对客户的贴身服务至关重要,系统要支持未来直接刷脸办理业务。即对于部分业务,要支持未来在 无需身份证信息的情况下,依然可以直接通过人脸识别身份信息,减少身份证 查验、复印存档等环节,提高客户办理业务的便捷性,提高窗口办理业务的效 率。
可见光人脸识别设备:在可见光环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别,适合在光线好的条件下应用。主动近红外人脸识别:在主动红外光源环境下(太阳光、日光灯等照明光源),采集的人脸图像,进行人脸识别。采用主动红外光源是为减弱环境光对人脸成像造成不利的影响(逆光、侧光、强光、弱光),红外主动光源位于不可见波段,不会伤害人的眼睛,而中/远红外波段成像会损失物体表面大多数信息,所以近红外是好的选择。由于近红外无法在中、远距离采集人脸图像,并且要求底库的人脸图像也是近红外模式下采集的照片,因此其存在比较大的应用局限性,目前主要用于人脸考勤、门禁。在现阶段的实际应用中,可见光的人脸识别的应用更加广泛。