车牌识别系统的工作原理,一个车位对应为一辆车,如果您有多辆车,一个车位可以录入多个车牌(一个车位登记不超过三辆车)当A车先进入园区停放,B、C车再进入园区则记为临停,当A车驶出园区,那么B或C车进入园区则正常停放,不计入临停。龙城国际物业服务中心需要业主提供身份证(核实业主身份)、行驶证、驾照是为确保业主信息和车辆信息的准确性,新系统投入使用后避免因登记车牌和实际使用车牌不匹配给您造成不便。如您的车牌信息未发生改变,我们将按照原始登记信息进行录入,在使用过程中因车牌信息有误导致车辆不能正常通行,请前往物业服务中心改车牌信息。
人脸识别设备是人脸识别产品利用AVS03A图像处理器;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
人脸识别设备是人脸识别产品利用AVS03A图像处理器;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等。而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。人脸识别设备是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
1、实现了和单机版本软件:一键安装。客户只需要下一步下一步,即可在三分钟内完成软件安装;2、实现了动态人脸识别仪和门禁控制器一套软件来管理;(门禁软件录入人员资料后在下发到控制器的同时,只需要把人员登记照片和工号同步下发到人脸识别仪上即可;目前识别仪容量3000-10000;识别仪和门禁控制器韦根通讯,同时和软件网络通讯用于下发人员照片到识别仪上);3、应用场景:办公、小区、尤其是工地,实现快速人脸识别通过、语音播报、接LED、电视机大屏显示统计数据、软件最小化等等;4、WEB版本门禁软件免费;门禁控制器还是常规通道闸门禁控制器;人脸识别一体化终端使用世界领先的人脸检测、识别算法,将其运行在高性能嵌入式平台中,配合200W像素宽动态摄像头,终端实现人脸检测、人脸跟踪、与人脸识别,并可在屏幕上呈现相应的反馈。本产品能够同时识别5个人,最远能识别3米远的人脸,人脸跟踪与检测耗时20ms左右,人脸特征提取耗时300ms左右,人脸比对耗时0.1ms左右,对光线、戴眼镜等具有较好的比对性。本产品可选配刷卡模块,同时实现刷卡与刷脸。本产品支持多种硬件功能接口(包含:HDMI高清输出,串口输入/出,网口,wifi接入);具有完善的软件接口(包含:设备管理、人员/照片管理、记录查看等)。同时本产品可以对接公司开发出的多种应用,比如:考勤、门禁、访客、实名认证。适用于办公区域、闸机通道、酒店、写字楼、学校等需要用到人脸识别闸机的场所。
车牌识别云台摄像机通过光抑制屏蔽,电子快门调节,宽动态功能等来实现抓拍车牌:强光屏蔽:在低照度彩色摄像机的基础上,通过软件的功能,把图像中最亮的部分遮挡。在交通监控中,一般可将大灯的强光遮挡,从而将车牌较清晰的抓拍下来。但是这款摄像机最大的缺点就是软件分辨不清,对于图像最亮部分界定不清,有可能将车牌号码也遮挡。同时无法处理高速运动物体的抓拍。目前国产摄像机在强光屏蔽方面做的比较多,效果各方反映不一。
(1)人脸检测:面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:兰州工地管理系统①参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法:工地管理系统批发由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪:面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对:面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法: